裏 RjpWiki

Julia ときどき R, Python によるコンピュータプログラム,コンピュータ・サイエンス,統計学

算額(その1073)

2024年06月17日 | Julia

算額(その1073)

九十八 江刺市 雨宝堂 現中善観音堂 文政10年(1827)
山村善夫:現存 岩手の算額,昭和52年1月30日,熊谷印刷,盛岡市.

http://www.wasan.jp/yamamura/yamamura.html
キーワード:円13個,外円

外円の中に,甲円 2 個,乙円 4 個,丙円 2 個,丁円 4 個を容れる。丁円の直径が 1 寸のとき,丙円の直径はいかほどか。

外円の半径と中心座標を R, (0, 0); R - 2r1
甲円の半径と中心座標を r1, (0, R - r1)
乙円の半径と中心座標を r2, (x2, r2)
丙円の半径と中心座標を r3, (x3, 0)
丁円の半径と中心座標を r4, (x4, y4)
とおき,以下の連立方程式を解く。

一度に解けない。しかし,丙円は最終的には丁円との関連を問われるが,甲円,乙円,丁円は丙円とは独立に決めることができるので,まず eq1, eq2, eq3, eq5, eq7 の連立方程式を解く。

include("julia-source.txt")

using SymPy

@syms R::positive, r1::positive,
     r2::positive, x2::positive,
     r3::positive, x3::positive,
     r4::positive, x4::positive, y4::positive
R = 2r1
eq1 = x2^2 + r2^2 - (R -r2)^2 |> expand
eq2 = x4^2 + y4^2 - (R - r4)^2 |> expand
eq3 = x2^2 + r2^2 - (r1 + r2)^2 |> expand
eq4 = x3^2 + (R - r1)^2 - (r1 + r3)^2 |> expand
eq5 = x4^2 + (y4 - R + r1)^2 - (r1 + r4)^2 |> expand
eq6 = (x2 - x3)^2 + r2^2 - (r2 + r3)^2 |> expand
eq7 = (x2 - x4)^2 + (y4 - r2)^2 - (r2 + r4)^2 |> expand;
res = solve([eq1, eq2, eq3, eq5, eq7], (r1, r2, x2, x4, y4))[1]

   (sqrt(2)*r4 + 5*r4/2, sqrt(2)*r4/2 + 5*r4/4, 2*r4 + 5*sqrt(2)*r4/2, 2*r4*sqrt(2*sqrt(2) + 3), 2*r4*(1 + sqrt(2)))

x4 は二重根号を外すことができる。

res[1] |> simplify |> println
res[2] |> simplify |> println
res[3] |> simplify |> println
res[4] |> sympy.sqrtdenest |> println
res[5] |> simplify |> println

   r4*(2*sqrt(2) + 5)/2
   r4*(2*sqrt(2) + 5)/4
   r4*(4 + 5*sqrt(2))/2
   2*r4*(1 + sqrt(2))
   2*r4*(1 + sqrt(2))

r1, r2, x2, x4, y4 が決まったので,残りの r3, x3 を求める。

r1 = √Sym(2)r4 + 5r4/2
r2 = √Sym(2)r4/2 + 5r4/4
x2 = 2r4 + 5√Sym(2)r4/2
x4 = 2r4*(1 + √Sym(2))
y4 = 2r4 + 2√Sym(2)r4
R = 2r1
eq4 = x3^2 + (R - r1)^2 - (r1 + r3)^2 |> expand
eq6 = (x2 - x3)^2 + r2^2 - (r2 + r3)^2 |> expand
res2 = solve([eq4, eq6], (r3, x3))[1]

   (-5*r4 - 2*sqrt(2)*r4 + 2*sqrt(2)*(8*r4/7 + 10*sqrt(2)*r4/7), 8*r4/7 + 10*sqrt(2)*r4/7)

r3 は更に簡約化できる。

res2[1] |> simplify |> println
res2[2] |> simplify |> println

   r4*(2*sqrt(2) + 5)/7
   2*r4*(4 + 5*sqrt(2))/7

丙円の半径 r3 は,丁円の半径 r4 の (2√2 + 5)/7 倍である。
丁円の直径が 1 寸のとき,丙円の直径は (2√2 + 5)/7 = 1.1183467321065985 寸である。

(2√2 + 5)/7

   1.1183467321065985

その他のパラメータは以下のとおりである

   r4 = 0.5;  r1 = 1.95711;  r2 = 0.978553;  x2 = 2.76777;  x4 = 2.41421;  y4 = 2.41421;  r3 = 0.559173;  x3 = 1.58158;  R = 3.91421

function draw(more=false)
   pyplot(size=(500, 500), grid=false, aspectratio=1, label="", fontfamily="IPAMincho")
   r4 = 1/2
   r1 = √2r4 + 5r4/2
   r2 = √2r4/2 + 5r4/4
   x2 = r4*(2 + 5√2/2)
   x4 = 2r4*(1 + √2)
   y4 = 2r4*(1 + √2)
   r3 = r4*(2√2 + 5)/7
   x3 = 2r4*(4 + 5√2)/7
   R = 2r1
   @printf("丁円の直径が %g のとき,丙円の直径は %g である。\n", 2r4, 2r3)
   @printf("r4 = %g;  r1 = %g;  r2 = %g;  x2 = %g;  x4 = %g;  y4 = %g;  r3 = %g;  x3 = %g;  R = %g\n",
       r4, r1, r2, x2, x4, y4, r3, x3, R)
   plot()
   circle(0, 0, R, :orange)
   circle22(0, R - r1, r1)
   circle4(x2, r2, r2, :blue)
   circle2(x3, 0, r3, :magenta)
   circle4(x4, y4, r4, :green)
   if more
       delta = (fontheight = (ylims()[2]- ylims()[1]) / 500 * 10 * 2) /3  # size[2] * fontsize * 2
       hline!([0], color=:gray80, lw=0.5)
       vline!([0], color=:gray80, lw=0.5)
       point(0, R - r1, "甲円:r1,(0,R-r1)", :red, :center, delta=-delta/2)
       point(x2, r2, "乙円:r2,(x2,r2)", :blue, :center, delta=-delta/2)
       point(x3, 0, "丙円:r3,(x3,0)", :magenta, :left, delta=-delta/2, deltax=-4delta)
       point(x4, y4, "丁円:r4,(x4,y4)", :green, :left, delta=-delta/2, deltax=-4delta)
       point(R, 0, " R", :black, :left, :bottom, delta=delta/2, deltax=-0.5delta)
   end
end;


コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« 算額(その1072) | トップ | 算額(その1074) »
最新の画像もっと見る

コメントを投稿

Julia」カテゴリの最新記事