とね日記

理数系ネタ、パソコン、フランス語の話が中心。
量子テレポーテーションや超弦理論の理解を目指して勉強を続けています!

とね日記について

2020年10月03日 22時48分47秒 | 物理学、数学

はじめてこのブログをお読みになる方のための紹介記事です。

ブログを始めてから11年たちました。2006年から300冊以上の理数系書籍、一般人向けの科学教養書から大学の教科書レベルの本まで興味のおもむくまま読んでいます。そしてそれぞれの本について感想、紹介記事を書きました。


自己紹介欄には次のように書いています。

「原子のレベルではテレポーテーションの実験が成功していることに衝撃を受けたのがきっかけで、大学卒業後20年ぶりに趣味で物理学と数学の勉強をはじめました。 」

参考記事: テレポーテーションは実現している。(リンク集)

量子テレポーテーションは1998年に最初の実験が成功していたのです。この技術は物質の瞬間移動装置として将来用いられるだけでなく、現在のスーパーコンピュータの数億倍~数兆倍の計算速度をもつ「量子コンピュータ」の基礎技術としても使われます。そして量子コンピュータはもはや机上の理論ではなく、すでに部品やモジュールの一部は実現し、個人でも利用し始められているのです。(参考記事「発売情報:クラウド量子計算入門:中山茂」(感想記事))

これらの理論や技術を理解するためには物理学や数学の知識が欠かせません。普通の会社員が市販されている本だけを読んで物理学や数学をどこまで理解できるのか?最先端の理論までたどり着くことができるのか?そのような気持ちでワクワクしながら読書を続けている日々を綴ったブログです。

私たちの日常感覚では空間と時間の間には何ら関係があるようには見えません。けれども特殊相対性理論(1905年)によって縦横高さの3次元の空間と過去から未来へ進む1次元の時間は別々に分かれているのではなく、空間と時間はひとつにまとまり、4次元の「時空」と呼ばれる形で存在していることが明らかになりました。4次元時空が回転することで、ある人にとっては空間の中の「長さ」として見えているうちの一部が、もう一人にとっては「時間として見える」という現象がおこり、長さの縮みと時間の延びとして観測されることになります。

またこの理論から時空の中に存在している物質がもつ質量とエネルギーは等価だということもわかり、E=mc^2という数式であらわされる質量とエネルギーの間に成り立つ関係式が導き出されました。この数式は少量の物質をこの世界から消滅させるだけで膨大なエネルギーが得られることを意味しています。この数式が得られたことで原爆や原発を開発できることがわかったのです。

また一般相対性理論(1916年)は物体の質量によって物体の周囲の時空に歪みができることを示し、私たちが感じている重力の正体が正しく理解できるようになりました。その後、量子力学(1925年~)によって私たちは電子や光子をはじめミクロの世界の物理法則を解明することにも成功したのです。私たちがふだん生活しているマクロの世界は原子や素粒子が集まって構成されているわけですから、ミクロの世界でそれらがどのような法則に従しているかを知るのはとても大切なことです。ところが量子力学を受け入れたとたん、日常感覚とはかけ離れたとても奇妙なことをいくつも事実として受け入れなければならなくなってしまいました。たとえば「情報はエネルギーに変換できる」ということもそのひとつです。

さらにその後、量子力学は実験する立場では「素粒子物理学」、理論研究する立場からは「場の量子論」という名前で呼ばれ、両者が協調する形で研究が進んでいきました。その中の理論研究から明らかになったのですが、一般相対性理論と量子力学はそれぞれ正しいにもかかわらず、一緒に使うと矛盾が生じてしまうことがわかったのです。ですから一般相対性理論と量子力学は1つの理論にまとめられません。この矛盾を解決するために提唱され、万能なひとつの統一理論を目指して現在研究が進んでいるのが超弦理論(1984年~)です。しかし超弦理論ではなんとミクロの世界での時空は4次元ではなく10次元または11次元だというのです。そしてこれらの理論が明らかにしようとしている時空や物質、力や運動、エネルギーは宇宙全体に広がっているだけでなく、私たちの身の回りや私たちの体の中のことでもあるのです。


研究が進むにつれて解明されたことはたくさんありますが、ますますワケのわからないことが増え、それらを受け入れなければ物理学を先に進めることはできません。なんだかとんでもないことになっているのだなぁと思うわけです。僕が知らなかっただけで、日常感覚では想像もつかない奇妙な現実が、常識的にこれはありえないでしょ!と思えることが、自分が生まれるはるか以前から明かにされていたことを知って愕然としました。

いつか相対性理論や量子テレポーテーションの理解には欠かせない量子力学、そして現在最先端の理論として研究されている超弦理論を理解できるようになりたい。本当のところ、この世界はどうなっているのかを知りたい。学生時代に物理学を専攻していなくてもそう思っている人は少なからずいるはずです。かくいう僕は大学時代は数学を専攻していて物理学の知識はほとんどありませんでした。(数学にしても大学3年のときに落ちこぼれていました。)


高校までに学べること

アイザック・ニュートンが著書『プリンキピア(自然哲学の数学的諸原理)』で万有引力の法則を発表し、月や惑星の運動や地上の物体の運動を微積分を使って証明したのは1687年で江戸時代前期のことです。そしてジェームズ・クラーク・マクスウェルが電磁気学の法則(マクスウェル方程式)を完成させたのは幕末の1864年です。理系を選択していても高校までの物理で計算方法を学べるのはそのあたりまでです。(原子や素粒子のことも高校で学びますが、ほんのさわり程度で計算方法は学べません。)

数学については数学IIIまで履修したとしても、学べるのは大ざっぱに言って17世紀末(江戸時代中期)までに研究、発見された内容にすぎません。

物理学にしても数学にしても、それ以降に人類が発見してきたことは大学に入ってからしか教えてもらえないのです。

科学の発展は経済や技術革新をもたらし社会通念や生活習慣に大きな影響を与えてきました。さまざまな電気製品や移動手段、通信手段が利用可能になり、私たちの生活スタイルは大きく変わりました。

とはいっても、ほとんどの人の自然や物事の理解のしかたは江戸時代や明治時代の人と大差ないのです。現代人のほとんどは相対性理論や量子力学が技術革新をもたらした根底にあるのだと知らされているだけで、それらを理解しているわけではありません。

理系の高校生が学ぶ物理や数学は、明治以来重点の置き方、教える順番や教え方は変わりましたが学習項目の点ではほとんど変わっていません。(参考記事:「復刻版 チャート式 代数学、幾何学(数研出版)」)

数百年をかけて数千人(数万人?)の天才たちがその生涯をかけて研究、発見し、私たちに残してくれた第一級の知的資産を理解せずに一生を終えてしまうのは実にもったいないことだと思うのです。そしてこれらの膨大な知の宝庫は効率的に学べるように整理され「教科書(専門書)」や一般の人が読める「科学教養書」として容易に手に入る時代なのです。たとえば、発表された1916年には世界中で理解できていたのは5人しかいなかったというアインシュタインの一般相対性理論も、現在では大学院ではなく物理学科の4年生のカリキュラムの中で教えられています。そして、なんと最近になって、高校卒業レベルの人でも理解できる「一般相対性理論を一歩一歩数式で理解する」という本まで登場しました。

小説を読んだり、音楽を聴いたりすることも人生を豊かにしてくれます。僕もそれらを楽しむのは大好きです。(小説など一般書の感想記事はここから読めます。)けれどもそれらはしょせん一人の小説家や音楽家の限られた頭の中で創作されたものにすぎません。物理学や数学のように先人の知恵や成果をもとに積み上げられてきたものではないからです。小説や音楽は感性の賜物なので物理学や数学のように論理的ではありませんから、そもそも比較することはできないわけですが、成果という観点では小説や音楽は「個人による成果」、物理学や数学は「積み上げられ発展していく成果」なのです。

相対性理論や量子力学、超弦理論という現代物理学の3大理論を目指して読書を始めると、ほどなくひとつひとつの事柄に驚かされ、ワクワクし、高揚感に満たされるようになってきました。そしてやめられなくなってしまうのです。


身近な現象を理解すること

物理学は宇宙、ブラックホール、ビッグバンの謎に迫るための手段であるだけでなく、身の回りの自然現象を解明する手段でもあります。たとえば力学や電磁気学、熱力学・統計力学、解析力学、量子力学など大学1、2年で学ぶ内容は、身の回りの自然現象を解き明かすことに直接つながります。そもそも、いったいどれほどの人が次のようなことをちゃんと理解できているでしょうか?

- ガラスのコップはなぜ透明に見えるのでしょうか?
- 光をガラスにあてると部分反射します。ガラスは透過させる光と反射させる光をどのようにして選り分けているのでしょうか?
- 物や自分自身は原子でできていると教えられていても、見たことのないそれはなぜあると言えるのでしょうか?
- テレビなど電気製品に使うリモコンはなぜ赤外線を使うのでしょうか?
- 光の3原色や色の3原色だけでなぜすべての色が表せるのでしょうか?
- 同じ10℃に冷やした鉄と木材に触ると、なぜ鉄のほうがより冷たくひんやりと感じるのでしょうか?
- 金属には温まりやすいものと温まりにくいものがありますが、どのような理由でその違いがおきているのでしょうか?
- 磁石と鉄、磁石と磁石は引き合ったり反発し合ったりしますが、どのようなしくみでそういう力が生じるのでしょうか?
- 正負の符号が異なる2つの電気は引き合い、同じ符号の電気は反発しますが、どのようなしくみでそういう力が生じるのでしょうか?
- スマートホンを使うと充電した電気(電子)はどこかに消えてなくなってしまうのでしょうか?
- スマートホンはなぜ発火したり爆発したりすることがあるのでしょうか?
- イヤホンケーブルのような「ひも」はなぜからまりやすいのでしょうか?

など、日ごろ経験しているこのように当たり前の現象は、きちんと学ばないとわからないものだらけです。これらは高校までの授業では学ぶことができません。

空間や時間、原子や電子、光子(そしてそのほかの素粒子)、そしてそれらの間に働く力やエネルギーの振る舞いを学んでいくうちに、これらの疑問は少しずつ解決していくのです。私たちの目にはそれぞれ違って見えるこの世界の出来事も、もとを正せば自然界を構成するこれらの要素の働きによるものです。

いずれ相対性理論やテレポーテーション、超弦理論を理解したいと読書を続けていく途上で、僕はこのように身近かな自然現象を理解することの面白さにも気が付きはじめました。


現代物理学と現代数学の不思議なつながり

勉強を続けていくうちに、数学は物理現象を方程式にして解いたり、物理法則を学ぶための道具であるだけでなく、それ以上のものであることもわかりました。物理学とは独立した抽象的な世界で発展した20世紀以降の現代数学は現代物理学と密接に結びついていたのです。

これは不思議なことです。現代物理学に詳しい数学者は少ないですし、数学者たちは物理学を意識して研究を進めているわけではないからです。現代数学と現代物理学がどのように結びついているかは次の記事をお読みになるとわかります。

- 感想: NHK数学ミステリー白熱教室
- 見えざる宇宙のかたち:シン=トゥン・ヤウ、スティーヴ・ネイディス
- ヒルベルト空間と量子力学:新井朝雄
- 量子力学の数学的構造 I:新井朝雄、江沢洋
- 量子力学の数学的構造 II:新井朝雄、江沢洋
- ゲージ理論とトポロジーの年表
- 理論物理学のための幾何学とトポロジー I:中原幹夫
- 理論物理学のための幾何学とトポロジー II:中原幹夫
- アラン・コンヌ博士の非可換幾何学とは?

そして勉強を進めれば進めるほど数学の抽象的で美しい数式や論理で記述される世界のほうが本質で、私たちが五感でとらえている物理世界のほうが影絵のようにあやふやなものに思えてくるのです。物質や空間、時間、力やエネルギーは本当に存在しているのでしょうか? これについては「実在とは何か? (別冊日経サイエンス)」という記事に書いておきました。物理学で「実在とは何か?」という疑問に最初に出会うのは量子力学を学ぶときです。実在することの不思議の鍵は量子力学の基礎方程式にあらわれる虚数 i にあったのです。虚数はもともと物理とは関係なく、代数方程式を解くために500年も前に発見されていました。(参考記事:「虚数は私たちの世界観を変えてしまった。」)


「まとめ記事」の紹介

本を1冊読んでは感想記事を書くというようなことを11年続けています。始めてから6年後には感想記事が200冊ぶんに達しました。そこまでの経験は「200冊の理数系書籍を読んで得られたこと」という記事にまとめてあります。200冊ぶんの書名は「最初に読んだ理数系書籍200冊の書名一覧でご覧いただけます。

それから3年4カ月後には感想記事が300冊に達しました。201冊めから300冊めについては「300冊の理数系書籍を読んで得られたこと」という記事にまとめてあります。

超弦理論まで時間を無駄にすることなく学んでみたいという方のためには「超弦理論への最短ルート: 40冊の物理学、数学書籍」や「超弦理論に至る100冊の物理学、数学書籍」という記事にまとめておきました。

このほか高校生や大学1、2年生向けには「高校生にお勧めする30冊の物理学、数学書籍」や「大学で学ぶ数学とは(概要編)」がお勧めです。また数式がまったく苦手という方のためには「文系の読者にお勧めする理数系書籍リスト」という記事を書いて科学教養書を紹介しました。

地道な読書を続けた結果、始めてから1年後には相対性理論と量子力学を、6年後には量子テレポーテーションをかろうじて理解でき、7年後には超弦理論の入門書を読み始めることができました。それぞれ次の記事に得られた感動を書いています。

- 時空の幾何学:特殊および一般相対論の数学的基礎
- 量子光学と量子情報科学:古澤明
- 初級講座弦理論 基礎編:B.ツヴィーバッハ
- 初級講座弦理論 発展編:B.ツヴィーバッハ

そして最初の10年間の進捗の概要は「祝: とね日記はおかげさまで10周年!」でお読みいただけます。

分野別に記事を探したい方は「記事一覧(分野別)」からお入りください。


高校生向けのお勧め記事

このようなわけで、ほとんどは本の感想記事なので物理学や数学を学べるわけではありません。けれどもそれらの面白さを高校生レベルの読者に伝えることはできないだろうかという観点から、いくつか記事を書いています。お勧めは次のような記事です。

数学:
- 因数分解って何の役に立つの?
- 高次元空間の隙間の大きさ
- キス数
- "5" で現れる不思議な形 (フェルマー点の話)
- 多次元空間へのお誘い(連載記事)
- 宇宙の形、ガウスの曲面論と内在幾何(連載記事)
- 虚数は私たちの世界観を変えてしまった。
- 虚数や複素数に大小がないのはなぜ?
- 複素世界は実世界とつながっている
- 種あかし: 複素世界は実世界とつながっている

物理学:
- 「理科復活プロジェクト」始動!
- 地球を8000万個に分割してみた - 重心と質点の話
- 半地球の重力場を描いてみた - 重心と質点の話
- ストッキングを使った極小曲面、最小面積曲面の実験
- 鉛筆はどれくらいの時間立っていられるか?

工学、コンピュータ:
- 量子コンピュータ、量子アルゴリズムを学びたい高校生のために
- 安田寿明先生の「マイ・コンピュータ」3部作(ブルーバックス)
- NEC TK-80やワンボードマイコンのこと
- 電卓を作りたいという妄想


理系の大学受験生向けには、次の記事も書いています。

- 復刻版 チャート式 代数学、幾何学(数研出版)
- 大学への数学(研文書院)
- 寺田文行先生の「数学の鉄則」シリーズ
- 大学で学ぶ数学とは(概要編)


人気記事

本の感想記事以外では、次のような記事がよくアクセスされています。

- どうして鏡は左右を逆に映すのに上下はそのままなの?
- 物理学、数学の動画: 相対性理論、量子論、電磁気学、超弦理論など
- 大学で学ぶ数学とは(概要編)
- 線形代数学入門のための教科書談義
- 解析学入門のための教科書談義
- ファインマン物理学(英語版)が全巻ネット公開されました。
- 英語版「ランダウ=リフシッツの理論物理学教程」がオンラインで無料公開された。
- 無料で学べる統計学入門サイトのリンク集
- ちょっと気になる常微分方程式の本
- 一般相対性理論に挑戦しよう!
- 重力波の直接観測に成功!
- ファインマンの経路積分に入門しよう!
- 解説:NHKスペシャル「神の数式」第1回:この世は何からできているのか
- 解説:NHKスペシャル「神の数式」第2回:宇宙はどこから来たのか
- 番組告知:NHK宇宙白熱教室(ローレンス・クラウス教授)
- 感想: NHK数学ミステリー白熱教室
- カラビ-ヤウ空間を見てみよう!
- 大栗先生の超弦理論入門:大栗博司
- 「9次元からきた男」ブロガー特別試写会の感想
- エキゾチックな球面: 野口廣
- 算数チャチャチャ(NHKみんなのうた)


学ぶことの意義、なぜ学ぶのか?

とね日記はこのようなブログです。理数系本の読書を続けていてもノーベル賞や文化勲章がもらえるようにはなりません。町内会のナントカ賞ももらえません。研究をしているわけではありませんし、論文も書いていないわけですから。だから少し悔しいと思うわけです。それならば自分が「賞」をもらう側ではなくあげる側になってみてはどうか。自分で賞を作ってみてはどうだろうかと思って2010年に始めたのが「とね日記賞」です。その年に読んだ本のうち特に素晴らしいと思った本に賞をあげてしまおうというわけです。小さいながらもひとつの「価値の創出」には違いありません。とね日記賞は毎年12月10日、スウェーデンのストックホルムで開催されるノーベル賞授賞式の日程に合わせて発表しています。

ブログの紹介をしながら、リンクでたくさんの入口をつけてみました。10年以上続けていますからブログの中は迷宮のようにリンクでつながっています。ぜひ興味のある入口からお入りください。

年をとるにしたがい人は経験を積み、人生や世の中のことがよくわかるようになります。けれども自然や宇宙についての知識や理解はみずから学ばない限り、けして得られるものではありません。

さあ、勉強を始めましょう!読書や勉強から得られる知識や発見、高揚感はお金では買うことのできない価値のひとつです。


ブログ執筆のはげみになりますので、1つずつ応援クリックをお願いします。
にほんブログ村 科学ブログ 物理学へ 人気ブログランキングへ 

  

 
ジャンル:
ウェブログ
コメント (8)   この記事についてブログを書く
この記事をはてなブックマークに追加
« 四千万歩の男 忠敬の生き方:... | トップ |   

8 コメント

コメント日が  古い順  |   新しい順
お仲間ですね (やす (Krtyski))
2016-10-24 17:16:00
とねさん

ここ1ヶ月ほど忙しくしていて、久しぶりに邪魔したところ常にトップに表示されるページが新設されているではありませんか?

私のブログでも、2020年の自分の誕生日の日付けで常にトップに表示される記事を掲載し、ブログ内の道案内(目次)を掲載しています。2020年は日本にとって複数の観点から記念すべき年だと、将来の歴史家が記述をするだろうと思って、この年にしました。

そんなことで、あとで消して頂いても構いませんので、思わずコメントをつけたくなりました。

Re: お仲間ですね (とね)
2016-10-24 17:36:30
やすさんへ

お仲間にならせていただきました。もっと前からこうすればよかったなと思っています。
このところ知り合った人にブログを紹介する機会が多かったもので、その都度説明するのが大変でした。
このようにブログの紹介をトップに表示させておけば便利ですね。初めてお読みになる方の利便性も増すと思います。

設定する日付はやはり思いつきやすいのは2020年でしょうね。僕も月日を誕生日に変えるかもしれません。

10月3日に設置しましたが、いまでもこの記事には毎日50アクセスくらいあります。
世界を変えた書物 (T_NAKA)
2016-11-04 20:59:27
次の講座が2016年11月7より始まります。
「世界を変えた書物-原著で辿る科学知の潮流-」
https://open.netlearning.co.jp/lecture/index.aspx?cid=00013J12
お知らせまで。
Re: 世界を変えた書物 (とね)
2016-11-05 11:09:14
T_NAKAさんへ

教えていただき、ありがとうございます。これはよさそうな科学史講座ですね。
講師の先生は金沢工業大学ライブラリーセンターの館長さんとのこと。プリンキピアの原本が所蔵されている施設ですね。

アイザック・ニュートン (1642-1727)
自然哲学の数学的原理(プリンキピア)
ロンドン, 1687年, 初版.
http://www.kanazawa-it.ac.jp/dawn/168701.html

ほかにもすごい資料がたくさん!
http://www.kanazawa-it.ac.jp/dawn/title.html#0
初めまして (蓮の花)
2017-04-04 23:54:11
面白い科学ブログと検索したらこのブログが1位でした。
上位圏内のブログは何か威張っている感じがしますが、筆者さんのブログは謙虚ですね。読者登録させて頂きました。
学べるあれこれが豊富ですね。
Re: 初めまして (とね)
2017-04-05 01:12:09
蓮の花さま

はじめまして。読者登録いただき、ありがとうございます。
アメリカ系のソフトウェア業界に身を置いていますが、大学卒業まで理系の世界に身を置いていました。

その意味で素人ながら勉強をしているのでいつまでたっても自分の理解に満足できないため、威張ることができないのです。w

理解できたことだけ、こんなに面白いことに気づきましたという感じで記事を書いています。

蓮の華さまのブログを少しだけ拝見させていただきました。日ごろ本業(ソフトウェア)関連の英語ばかりですので、自分が読み書きしているのとは全く異なる世界の「対訳」がとても参考になります。折に触れて読ませていただきますね。
わお (蓮の花)
2017-04-05 02:47:05
アメリカ系のSoftwear系に関わっているのですね。そっち系の英語は工学的でさっぱりしてるでしょうね。面白そうです。

私はメッサチュセッツ州のWestfieldに住んでいます。
今月末に隣の州に引っ越します。

ソウトウェア系の英語は読んでみたいです。
訳した人柄が現れるので面白そうですね。
理科や科学本当に好きなんです。
Periodic tableとかは趣味で覚えたりしてます。
Re: わお (とね)
2017-04-05 09:37:38
蓮の花
ソフトウェア系の翻訳は用語や表現にばらつきがあるとみっともないので、それらの統一をするのが大変です。翻訳量が多くいちどに複数の翻訳者がかかわることになるので、なおさら難しくなります。

周期表は高校時代に語呂合わせで覚えましたが、英語圏でも同じようなことをして高校生たちは覚えているのかな?と思いました。最近は「元素図鑑」のように美しい写真付きで学べるので、小中学生に興味をもってもらうのに好都合だと思います。

引っ越しを控えていらっしゃるとのこと。腰を傷めないよう、気を付けてくださいね。

重い荷物の持ち方にはコツがあった!! こうすれば持ちやすいです。
http://www.recycle-angel.com/blog/2015/05/31/259

コメントを投稿

ブログ作成者から承認されるまでコメントは反映されません。

コメント利用規約に同意の上コメント投稿を行ってください。

数字4桁を入力し、投稿ボタンを押してください。

あわせて読む

トラックバック

この記事のトラックバック  Ping-URL
ブログ作成者から承認されるまでトラックバックは反映されません。