対話とモノローグ

        弁証法のゆくえ

幻視のなかの橋5

2017-04-19 | 4元数
5 公式の整理
 (注、これは「2つの公式の違い」と「発見の意識と無意識」を編集したものである。)

ハミルトンは1843年10月16日、2種類の公式を書いている。
朝、手帳と橋の欄干に書いたもの。
i2=j2=k2=ijk=-1
夜、ノートに書いたもの。
i2=j2=k2=-1
ij=k,jk=i,ki=j
ji=-k,kj=-i,ik=-j
この2つの式は4元数の公式として同じものである。しかし、朝の1行の式は「ことの重大性が一瞬に感じとれたこと」、「電気の回路は閉じ、閃光がひらめいた」と形容されているものである。この2つの公式の違いは何なのだろうか。比喩的にいえば、朝の式は迷いのなかでみた光であり、夜の式は悟りのなかで輝く光といえばよいのではないだろうか。
ノートには研究の経緯が述べられている。そのなかで注目すべきは、3元数の積について、特殊な場合と一般的な場合では違いがあったことである。
特殊な場合、
(x+iy+jz) 2
(a+iy+jz)(x+iy+jz)

では、これらはij=0やij=-jiijだけで閉じている)の仮定だけでも3元数は成立していた。
これに対して、一般的な3元数の積
(a+ib+jc)(x+iy+jz)
を考えた場合は、3元では収まらず、「積ijが新しい虚数、ji=-kとしたときのkになるのではないか」という考えがあったことである。4元数が見え隠れしていたのである。
朝の式の核になっているのはijk=-1である。この式がどのように現れたのかは「謎」(ハミルトンにとっても)である。しかし、この式の中でij=0が成立しないことは明確である。ハミルトンにとってij=0(やij=-ji)は空間のベクトルを3元(1,i,j)で完結させたいという願望だったのだろう。
ijk=-1の出現によって、この道が消えたのである。いいかえれば3元数の積は3元では表現できず、第4の元を導入せざるを得ないことが明確になったのである。ijk=-1はij=0を排除して4元数と直面させた。「迷いのなかでみた光」というゆえんである。
しかし、迷いはすぐになくなったわけではない。ノートを読むと、ijk=-1を自覚した後でも、ij=0の可能性に対する未練は残っていたことがわかる。ハミルトンは次のように述べている。
(引用はじめ)
未だに(そしてたぶん前にも)ij=0になることは可能ではないか、と考えていた:そして(朝の思考過程を夜になって思い出そうと試みて)私は信ずるに、この等式ij=0が真であることが分かるのが、奇妙かもしれないが、もっともらしいとさえ考えた
(引用おわり)
感動的な告白ではないか。3元だけで完結させたいという気持ちはそれほど強かったのである。
また、ハミルトンは、k2=1の可能性にもふれている。「一時、k2=1もありそうだと思った」と述べている。
着目してほしいのは、ij=0とk2=1はi,jと等価な第4の元kの存在の否定と対応していて、公式と両立しないことである。しかも、このij=0とk2=1は、
i2=j2=k2=ijk=-1
が喚起された後でも保持され意識されていることである。
これは朝の4元数の発見が無意識のうちに起ったことを意味しているだろう。わたしたちが夜のノートにみるのは、ハミルトンが意識していた願望を修正し、無意識のうちに発見された4元数を追いかけていく過程なのではないだろうか。
(引用はじめ)
こうして、i2=-1とj2=-1だけでなくk2=-1そしてij=k,ji=-kをも仮定するようになった。それからもっともなこととして、ik=-jを仮定するのが適当と考えた。じっさい、ik=iijであり、i2=-1である。そうであるならば、ji=-ijであるからki=-ik=jのように思える。この関係はk=-jiからも導ける。同様にして可能と見えるのは(もしくは、少なくとも自然に仮定されるのは)kj=ijj=-i、jk=-jji=iである。
乗法の仮定もしくは定義は集計して、
i2=j2=k2=-1
ij=k,jk=i,ki=j
ji=-k,kj=-i,ik=-j
(引用おわり)(『ハミルトンと四元数』(堀源一郎著、海鳴社、2007)2章 参照)
ジャンル:
ウェブログ
コメント   この記事についてブログを書く
この記事をはてなブックマークに追加
« あらけない | トップ | シャガ »
最近の画像もっと見る

コメントを投稿


コメント利用規約に同意の上コメント投稿を行ってください。

数字4桁を入力し、投稿ボタンを押してください。

あわせて読む

トラックバック

この記事のトラックバック  Ping-URL
  • 送信元の記事内容が半角英数のみのトラックバックは受け取らないよう設定されております。
  • ※ブログ管理者のみ、編集画面で設定の変更が可能です。