ぼんさいメモ

介護用ベッドで考えたり、調べたことのメモです。(妻に感謝)
転載:自由(校正・編集不可)。内容:無保証。

?GCR:面積と体積の計算

2017-01-02 16:32:06 | 学習

@http://blog.goo.ne.jp/bonsai-chat/e/98d6d6abe7ed44f3b8af2d41f559518f
=?GCR:面積と体積の計算
/作成中(無視してください)


%0:面積と体積の計算
算数では平面図形や立体の面積や体積を計算する多くの公式を学ぶようですが,公式を導くつもりで計算方法を考えてみましょう.


・以下では△ABCの面積を単に『△ABC』,線分PQの長さを単に『PQと略記しています(試験やレポートに使わないでください).(角の大きさは単に「∠ABC」)


・e.g.[=G7A%5:小5の算数]の([%21B11]:図形の面積)で紹介した
[1]図形の公式一覧!図形の面積と体積はこれでバッチリ!
http://kateikyousi.doorblog.jp/archives/54327913.html
[2]図形の面積-算数の公式覚えてますか?
http://labsolutionsusa.com/0001/
[4]平面図形の面積 - 学ぶ・教える.
http://www.manabu-oshieru.com/chugakujuken/sansu/menseki.html
%1:直角三角形の面積
『長方形ABCD』=2×『△ABD』
[1]直角三角形
http://ja.wikipedia.org/wiki/%E7%9B%B4%E8%A7%92%E4%B8%89%E8%A7%92%E5%BD%A2
・直角三角形の直角の対辺を斜辺と言い、残りの2辺を 直角をはさむ2辺 または単に隣辺と言う。
・直角三角形の各辺の長さの関係はピタゴラスの定理(三平方の定理)と呼ばれる。
[2]雑学のソムリエ 垂線の足
http://tadahikostar.blog21.fc2.com/blog-entry-1213.html
%2:合同な図形と立体
「同じ形をしている図形の面積や体積は等しい」というのが計算の基礎.


二つの三角形「△ABC」,「△DEF」が同じ形(「合同」)であることを「△ABC≡△DEF」とかく.このとき,
・i.e.『AB=DE』,『BC=EF』,『CA=FD』(必要十分条件)
・e.g.「∠ABC=∠DEF」,「∠BCA=∠EFD」,「∠CAB=∠FDE」(必要条件)


%21:穴がある正方形の面積
・一辺が「2cm」の正方形の穴がある,一辺が「5cm」正方形の面積は「(25-4)cm2
%22:葉っぱ型図形の面積
[3]面積の求め方(第3回) ~葉っぱ型図形の面積 - 学びの場
http://www.manabinoba.com/math/6520.html


[3]図形の合同と対応|算数用語集
http://www.shinko-keirin.co.jp/keirinkan/sansu/WebHelp/05/page5_06.html
[4]合同な図形 - 学研キッズネット
http://kids.gakken.co.jp/box/sansu/05/tan05.html

%11:鋭角三角形の面積
鋭角三角形△ABCの頂点Aから辺BCに下した垂線の足をHとすると△ABH,△AHCは直角三角形で
 『△ABC』=(1/2)『BH』×『AH』+(1/2)『HC』×『AH』=(1/2)『BC』×『AH』


         A
  B----H---C      (BH+HC=BC)


%12:鈍角三角形の面積
∠BCAが直角より大きい△ABCでは頂点Aから直線BCに下した垂線の足をHとすると
 『△ABC』=『△ABH』-『△ACH


               A
  B----C---H      (BH-CH=BC) 


%14:多角形の面積
[5]多角形
http://ja.wikipedia.org/wiki/%E5%A4%9A%E8%A7%92%E5%BD%A2
%141:平行四辺形の面積
「平行四辺形ABCD」の頂点「A」から辺「BC」に下した垂線の足を「H」とすると
 『平行四辺形ABCD』=『BC』×『AH』
・「△ABH」を切り取って「AB」を「DC」にくっつける(平行移動する)と
 『平行四辺形ABCD』=長方形『AHHA
 


    A-----D     (「△ABC≡△ACD」)
    B-H---C


%142:台形の面積
「台形ABCD」の頂点「A」から辺「BC」に下した垂線の足を「H」とする.
「台形ABCD」のコピーを2回裏返して「台形ABCD」にくっつけると平行四辺形を作ることができるので,
・『台形ABCD』=(『BC』+『DA』)×『AH』÷2


 C------H---B A----D
   D----A B---H------C


%143:ひし形の面積
『AB=BC』『CD=DA』である「平行四辺形ABCD」をひし形という.このとき「△ABC」,「△CDA」は二等辺三角形であるから,「平行四辺形ABCD」の対角線の交点を「M」とすると
『平行四辺形ABCD』 =『△ABC』+『△CDA』=『AC』×『BM』+『AC』×『DM』=『AC』×『BD』


     A ----D
       M
  B----C


 %143:直方体の体積
%144:多角柱の体積
%144:多角錐の体積
%3:相似な図形と立体
[6]図形の相似
http://ja.wikipedia.org/wiki/%E5%9B%B3%E5%BD%A2%E3%81%AE%E7%9B%B8%E4%BC%BC
%31:相似な図形の面積と体積
[?]図形の面積比・体積比 | 数学I | フリー教材開発コミュニティ FTEXT
http://www.ftext.org/text/section/81
[?]相似な図形の面積と体積
http://www2.oninet.ne.jp/mazra/k4/k4-33.htm
[?]相似な図形における表面積比と体積比 / 中学数学 by OKボーイ |マナペディア
http://manapedia.jp/text/84
[?]相似比と面積比,体積比の公式の証明 | 高校数学の美しい物語
http://mathtrain.jp/sojihisv
%4:円と球
[]円と球|算数用語集
http://www.shinko-keirin.co.jp/keirinkan/sansu/WebHelp/03/page3_06.html
[]円と球 - 学研キッズネット
http://kids.gakken.co.jp/box/sansu/03/tan04.html
[]円と球プリント | ぷりんときっず
http://print-kids.net/print/sansuu/en-to-kyuu/
%41:円周率
[?]円周率
http://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%8E%87
/[?]円周率は3 - Wikipedia
http://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%8E%87%E3%81%AF3
・授業では「3」でなく「π」にすれば?
%41:円の面積
[?]円の面積|算数用語集
http://www.shinko-keirin.co.jp/keirinkan/sansu/WebHelp/06/page6_15.html
[?]円の面積はなぜ「半径×半径×3.14」なの? → 一目で理由が分かるサイト
http://nlab.itmedia.co.jp/nl/articles/1305/14/news085.html
・cf. [円の面積]
・逆理:「三角形の2辺の和は1辺の長さに等しい」(もちろんウソです)
http://ja.wikipedia.org/wiki/%E3%82%BC%E3%83%8E%E3%83%B3%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
%41:円錐の体積
%43:回転体の体積 
%431:球の体積
%5:積分による説明(高校生用)
%51:カヴァリエリの原理
[]カヴァリエリの原理 - Wikipedia
http://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%B4%E3%82%A1%E3%83%AA%E3%82%A8%E3%83%AA%E3%81%AE%E5%8E%9F%E7%90%86
[2]カバリエリの原理 - HALの日々
http://d.hatena.ne.jp/HAL9000-esper/20120320/1332251891

ジャンル:
その他
コメント   この記事についてブログを書く
この記事をはてなブックマークに追加
« ?GC3:計算の順序を指定する括弧 | トップ | G7B%1:負の数の掛け算 »
最近の画像もっと見る

コメントを投稿

学習」カテゴリの最新記事

トラックバック

この記事のトラックバック  Ping-URL
  • 30日以上前の記事に対するトラックバックは受け取らないよう設定されております。
  • 送信元の記事内容が半角英数のみのトラックバックは受け取らないよう設定されております。
  • このブログへのリンクがない記事からのトラックバックは受け取らないよう設定されております。
  • ※ブログ管理者のみ、編集画面で設定の変更が可能です。